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Abstract
A coarse-grained model for colloid–polymer mixtures is investigated where both colloids and
polymer coils are represented as point-like particles interacting with spherically symmetric
effective potentials. Colloid–colloid and colloid–polymer interactions are described by
Weeks–Chandler–Andersen potentials, while the polymer–polymer interaction is very soft, of
strength kBT/2 for maximum polymer–polymer overlap. This model can be efficiently
simulated both by Monte Carlo and molecular dynamics methods, and its phase diagram closely
resembles that of the well-known Asakura–Oosawa model. The static and dynamic properties
of the model are presented for systems at critical colloid density, varying the polymer density in
the one-phase region. Applying Lees-Edwards boundary conditions, colloid–polymer mixtures
exposed to shear deformation are considered, and the resulting anisotropy of correlations is
studied. Whereas for the considered shear rate, γ̇ = 0.1, radial distribution functions and static
structure factors indicate only small structural changes under shear, an appropriate projection of
these correlation functions onto spherical harmonics is presented that allows us to directly
quantify the structural anisotropies. However, the considered shear rate is probably not high
enough to see anisotropies in static structure factors at small wavenumbers that have been
predicted by Onuki and Kawasaki (1979 Ann. Phys. 121 456) for the critical behavior of
systems under shear. The anomalous dependence of the polymer’s self-diffusion constant on
polymer density is referred to the clustering of the colloid particles when approaching the
critical point.

1. Introduction

Colloid–polymer mixtures exhibit a phase behavior where both
liquid–vapor-type phase separation and liquid–solid (crystal)
transitions occur [1–3]. Since repulsive interactions among
colloidal particles are tunable to a large extent [4–6], and
also the depletion attraction between colloids caused by

nonadsorbing polymers [7–9] can be varied widely simply by
the size of the polymer coils, the interplay between structure
and dynamics, on the one hand, and the effective interaction
among particles, on the other hand, can be elucidated in detail,
often much better than would be possible for systems formed
from small molecules. A further attractive feature of these soft
matter systems is the sensibility to applied external fields [5, 6]
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and, last but not least, the large size of the colloidal particles
(in the micrometer range) allows the direct observation of their
structure and dynamics via confocal microscopy techniques
(see, e.g., [10]). As a result, these systems have become model
systems allowing the real-space experimental observation of
statics and dynamics of capillary waves at interfaces [11], of
wetting layer formation [12–14], of critical fluctuations [15],
etc. Studies of non-equilibrium phenomena have also been
illuminating, such as the study of phase separation kinetics [16]
and shear-induced narrowing of interfacial widths [17].

For providing a detailed understanding of such cooperative
phenomena in these soft matter model systems, the interplay
between experiment, theory and computer simulation has been
particularly fruitful (see, e.g., [4–6] for reviews). In the case
of colloid–polymer mixtures, the standard theoretical model
for the description of static phenomena has been the Asakura–
Oosawa model [7–9]. In this model, spherical colloidal
particles are simply treated as hard spheres which may neither
overlap with each other nor with the polymers. On the other
hand, polymers are also modeled as spheres, but they may
overlap with each other at no energy cost. This model has been
studied extensively both by analytical theory and simulations
(see, e.g., [1, 18–22]), providing a detailed understanding of
various static properties. The phase behavior in equilibrium as
well as interfacial and confinement effects [21, 22] was also
elucidated.

However, since, like in an ideal gas, there is no polymer–
polymer interaction energy, this model is unsuitable to describe
the dynamics of the system even on a simplified, coarse-
grained level (the fluid in which the colloidal particles are
suspended and the polymers are dissolved still does not need
to be considered explicitly). Actually, if two polymer coils in
a good solvent overlap, there is a nonzero interaction energy,
which may be approximately described as [23–27] U(r) =
U0 exp[−(r/R)2], with r the distance between the center of
mass of the coils and R a length of the order of their gyration
radius. The pre-factor U0 is of the order of the thermal energy
kBT .

This fact has been our motivation to introduce [28] a
variant of the Asakura–Oosawa (AO) model where polymers
have such a soft interaction, and also the discontinuous hard-
core colloid–colloid and colloid–polymer interactions of the
AO model are replaced by continuous potentials of the Weeks–
Chandler–Andersen (WCA) type [29]. The Monte Carlo
study of such a continuous variant of the AO model is not
straightforward, since the generalization of the cluster move
allowing a very efficient simulation in the grand-canonical
ensemble [30] is nontrivial [28]. This method is discussed
in [28] where also the finite-size scaling analysis of such Monte
Carlo ‘data’ [31, 32] is described.

In the present paper, we extend the study of this
model [28] describing various results obtained via molecular
dynamics (MD) methods [33], varying the polymer densities
but choosing the colloid density precisely at the value of
the critical density of the model. This critical density has
been deduced from the finite-size analysis of the Monte Carlo
data [28]. In particular, we present a first feasibility test of a
non-equilibrium molecular dynamics (NEMD) study [33, 34]
of a colloid–polymer mixture under shear (section 5).

In section 2, we recall the precise definition of the model
and also present its phase diagram. Section 3 then discusses
static radial distribution functions and structure factors in
equilibrium. Section 4 discusses time-dependent structure
factors and mean square displacement, while section 5
summarizes our conclusions.

2. Model and equilibrium phase diagram

To describe the phase behavior of colloid–polymer mixtures,
one has to consider rather dense systems and the densities
of colloids and polymers may vary over a wide range. In
addition, the properties of polymers are strongly affected by the
‘quality of the solvent’ in which they are suspended [35]. Since
the interactions in colloid–polymer mixtures may strongly
change when one varies the densities or the properties of
the solvent, the derivation of effective interaction potentials
between colloids and polymers in a colloidal suspension is
a nontrivial task [23–27]. In this work, we are not aiming
at deriving a realistic interaction potential, but we rather
follow [28] and use a generic model that captures qualitatively
the features that are relevant for describing the phase behavior
of colloid–polymer mixtures under shear. In our model,
interactions are also optimized with respect to computational
efficiency for MD methods. In particular, we wish to work
with potentials of strictly finite range, i.e. the potential Uαβ

between particles of type αβ = cc, cp, pp (with ‘c’ denoting
the colloids and ‘p’ the polymers) should be identically zero
for distances r exceeding a cutoff rc,αβ . For the colloid–colloid
and colloid–polymer interactions we hence choose the WCA
potential [29]:

Uαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6

+ 1

4

]
S, (1)

where εαβ controls the strength and σαβ the range of the
potential. The cutoff is set to rc,αβ = 21/6σαβ . Since we require
strict energy conservation for MD in the microcanonical
ensemble, not only Uαβ(r) has to be smooth at r = rc,αβ but
also the forces need to be continuous everywhere. Therefore,
we use a smoothing function S, given by

S = (r − rc,αβ )4

h4 + (r − rc,αβ )4
(2)

with h = 10−2σαβ . In order to be able to compare with
previous work on the ordinary AO model [20–22, 30] a size
ratio q = σpp/σcc = 0.8 between polymers and colloids is
chosen. Furthermore, we set εcc = εcp and

σcp = (σcc + σpp)/2 = 0.9σcc. (3)

In the following, units are given by σcc = 1, εcc = 1 and
kBT = 1. For the soft polymer–polymer interaction potential,
we choose
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Figure 1. Potentials Uαβ(r) describing the polymer–polymer,
colloid–polymer and colloid–colloid interactions as a function of
distance r . Asterisks highlight the cutoff distances, as indicated.
Note that energies are measured in units of εcc = εcp = kBT = 1.

with εpp = 0.0625. Figure 1 displays all three potentials as
a function of distance [28]. Note that the potential function
in equation (4) has a similar shape as a cosine function; this
function provides that both the force and the potential vanish
at rc,pp, as required.

In the ordinary AO model, the phase behavior is often
discussed using the packing fractions ηc, ηp of colloids and
polymers as variables rather than the densities ρc and ρp:

ηc = ρcVc, ηp = ρpVp, (5)

where Vc and Vp are the volumes occupied by a colloid and
polymer, respectively (Vc = πd3

cc/6 and Vp = πd3
pp/6, where

dcc and dpp denote the diameter of the spheres representing
colloids and polymers, respectively). In order to be able
to compare the present continuous variant of the AO model
to its original, discontinuous version, we define an effective
diameter of colloids and polymers, following Barker and
Henderson [37]:

dαβ =
∫ σαβ

0
(1 − exp[−Uαβ(r)/kBT ]) dr, (6)

which yields dcc = 1.015 57σcc and dcp = 0.9dcc. Inserting
dpp = 0.8dcc, we finally obtain the following conversion
formulae between densities and effective packing fractions:

ηc = 0.548 44σ 3
ccρc, ηp = 0.280 80σ 3

ccρp. (7)

While for the critical point of vapor–liquid type demixing
one finds in the case of the ordinary AO model for q = 0.8
that [30]

ηc,crit = 0.134, ηp,crit = 0.356, (8)

in the case of soft polymer–polymer repulsion (equation (4))
the critical point is shifted to somewhat higher colloid and
lower polymer packing fraction:

ηc,crit = 0.150, ηp,crit = 0.328. (9)

Figure 2. Phase diagrams of three models describing
colloid–polymer mixtures, in the plane of variables ηp (polymer
packing fraction) and ηc (colloid packing fraction) as defined in
equation (7). The original AO model (studied in [20, 30]) is shown
by a full curve, with its critical point by an open circle. A soft variant
of this model (using WCA potentials as defined in equations (1)
and (2) but still strictly non-interacting polymers, i.e. εpp = 0) is
shown by standing crosses, while the broken curve and crosses (×)
denote the model studied in the present paper, where equation (4)
with εpp = 0.0625 is used. The full dot shows the critical point of the
latter model. The triangles indicate state points at which MD runs in
equilibrium (without shear) were performed. Reprinted with
permission from [28]. Copyright 2009 by the American Institute of
Physics.

In addition, there occurs a slight enhancement of miscibility on
the colloid-rich side and a slight depression of the miscibility
gap on the polymer-rich side of the phase diagram in the
(ηp, ηc) plane (figure 2). The increase of the polymer density
at high colloid packing fractions over that of the hard-core
AO model follows the trend seen in experiments of colloid–
polymer mixtures (see [36] and references therein). Note
that the change of the phase diagram in comparison with the
standard AO model is practically only due to the repulsive
polymer–polymer interactions: if one uses equations (1)
and (2), but sets εpp = 0 in equation (4), the phase diagram
is almost indistinguishable from the standard AO model
(figure 2). Note that both the critical point and the coexistence
curve separating the one-phase region from the region where
phase separation occurs were found by MC methods [28].

In figure 2 the state points at which microcanonical MD
runs were performed are indicated as well. In all cases,
particles were put into a cubic simulation box with linear size
L = 27.0, using periodic boundary conditions in the three
spatial directions (recall that the unit of length is σcc = 1).
Fixing the number of colloids at Nc = 5373, we thus realize
that the system is always at a packing fraction ηc equal to the
critical packing fraction, ηc = ηc,crit = 0.15. Then, the number
of polymers varies from zero to Np = 22 734. The MD runs
were carried out with the velocity Verlet algorithm [33] and a
time step δt = 0.0005(σccmc/εcc)

1/2. For the sake of efficiency
of the algorithm, the masses of colloids and polymers are taken
to be equal, mc = mp = 1 (thus specifying the units of time).

When one uses MD to compute dynamic correlation
functions and transport phenomena in thermal equilibrium, it
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is desirable to work strictly in the microcanonical ensemble,
since it is well known that the use of ‘thermostats’ for
MD simulations may affect the dynamic correlations in an
uncontrolled and undesirable way [33, 38, 39]. In this case,
however, we need to generate initial states which represent
system configurations in equilibrium for the desired conditions
(e.g. the canonical ensemble for kBT = 1).

First, we equilibrated a small system with L = 9, starting
with a random initial configuration of colloids with Nc/27
and Np/27, and ran the system at kBT = 1 for 20 × 106

MD time steps with a simple velocity rescaling according to
the Maxwell–Boltzmann distribution. Then, the system was
enlarged from L = 9 to 27 by replicating it three times in all
spatial directions. Periodic boundary conditions were applied
for L = 27 only and equilibration continued with the same
‘Maxwell–Boltzmann thermostat’ as before for another 2×106

time steps. During this period, the initial periodicity with
L = 9 is quickly lost. The production runs for static averages
are done without applying any thermostat. First, 5 × 106 time
steps are performed during which (at eight different times)
statistically independent configurations are stored. These serve
as initial configurations for eight independent simulation runs,
each with 5 × 106 time steps, for the computation of static
averages. During each run, 500 configurations are analyzed
in regular intervals. Thus, averages are taken over 4000
statistically independent configurations.

3. Static correlations

Colloid–polymer mixtures exhibit a demixing transition,
associated with the coexistence of a colloid-rich (polymer-
poor) phase with a colloid-poor (polymer-rich) phase. This
transition occurs because the depletion of polymer particles
leads to an effective attraction between the colloids. This
depletion effect can be incorporated into a one-component AO
model where the polymer’s degrees of freedom are expressed
by an attractive part in the interaction potential between the
colloids. In the latter case, the demixing transition is an
ordinary liquid–gas transition. Although the one-component
AO model is appealing due to its simplicity, it leaves out
interesting features of real colloid–polymer mixtures, such as
correlations between the polymers close to the critical point.
In the modified AO model, presented here, the soft interactions
between the polymers lead to a weak short-range ordering
between the polymers and to a modification of the phase
diagram, as indicated by figure 2. In this section, we discuss
the behavior of static density correlation functions and the
susceptibility when approaching the critical point from the one-
phase region.

The basic quantities for the following analysis are the pair
correlation functions between particles of type α and β(α, β ∈
{c, p}) [29]:

Gαβ(�r) = L3

Nα Nβ

〈 Nα∑
i=1

Nβ∑
j ( �=i)

δ(�ri − �r j − �r)

〉
. (10)

In equilibrium, the fluid is isotropic and hence it makes sense
to integrate over angles and consider only the partial radial

distribution functions gαβ(r):

gαβ(r) = L3

4πr 2 Nα Nβ

〈 Nα∑
i=1

Nβ∑
j=1

δ(|�ri − �r j | − r)

〉
. (11)

When shear is applied (section 5), directions parallel and
perpendicular to the flow are no longer equivalent and we need
to consider the resulting anisotropy of Gαβ(�r).

Particularly important are the Fourier transforms of these
correlations, since they are accessible experimentally via
scattering experiments, as is well known [29]. The partial
structure factors are defined by

Sαβ(�q) = 1

N

〈 Nα∑
i=1

Nβ∑
j=1

exp[−i�q · (�rα
i − �rβ

j )]
〉
, (12)

which can also be rewritten as [cα ≡ Nα/(Nα+Nβ ) = Nα/N]:

Sαβ(�q) = cαδαβ + cαcβ

N

L3

∫
Gαβ(�r) exp[−i �q · �r ] d3�r . (13)

In equilibrium, Sαβ does not depend on the direction of �q ,
of course, but again we will find an anisotropy of Sαβ(�q) in
the case of the mixture under shear (section 5). Note that
equations (10)–(13) are valid definitions for the case of steady-
state shear as well.

Figures 3 and 4 show the partial radial distribution
functions and the corresponding static partial structure factors,
respectively. The partial radial distribution function gcc(r)

pertaining to the colloids exhibits, for small polymer packing
fraction ηp, the behavior typical for moderately dense fluids:
gcc(r) is strictly zero for smaller r where the repulsive
interaction, equation (1), prevails, while at r ≈ 1.25 a rather
sharp peak due to the nearest-neighbor shell occurs. The
typical further oscillations are rather weak and gcc(r) rapidly
tends towards unity, as expected, since ηc is still rather small.
However, when ηp increases, one sees, for r up to about r ≈ 5,
a slowly decaying tail where gcc(r) > 1 develops: this is
the hallmark of the incumbent growth of long-range density
correlations. These density correlations are more distinctly
seen in the partial structure factor Scc(q), figure 4(a), where
at small q a peak grows that represents the critical scattering.
The oscillations at large q in figure 4(a) are not much affected
by the increase of ηp, as far as their location is concerned (the
intensity of S(q) for large q decreases strongly with increasing
ηp, since the denominator N = Nc + Np in equation (12)
increases when ηp increases, of course).

The radial distribution function gcp(r) referring to colloid–
polymer pairs, figure 3(b), is also essentially zero for small
r and exhibits a rather sharp but not very high peak at about
the same position as the function gcc(r), but the minimum that
follows is more pronounced than the first minimum of gcc(r).
When ηp increases, a slowly decaying tail at larger r also
develops, but now gcp(r) < 1 in this region. As a consequence,
the resulting structure factor Scp(q), figure 4(b), develops at
small q a pronounced anomaly but there Scp(q) < 0.

In the polymer–polymer radial distribution function gpp(r)

(figure 3(c)) and the associated structure factor Spp(q)

4



J. Phys.: Condens. Matter 22 (2010) 104120 J Zausch et al

Figure 3. Partial radial distribution functions gcc(r) of
colloid–colloid pairs (a), gcp(r) of colloid–polymer pairs (b) and
gpp(r) referring to polymer–polymer pairs (c), plotted as a function
of r , for a system with L = 27 and Nc = 5373. The curves refer to a
variation of the polymer packing fraction ηp = 0.065, 0.129, 0.197,
0.255 and 0.318 (from bottom to top). Note that the curves are
shifted with respect to each other in steps of 0.1 with respect to the y
axis.

(figure 4(c)) one finds again the signatures of a growing range
of density correlations of the polymers when ηp increases.
Since the polymers can overlap with little energy cost, gp p(r)

at small r is nonzero (and even distinctly larger than unity),

Figure 4. Partial structure factors Scc(q) of colloid–colloid pairs (a),
Scp(q) of colloid–polymer pairs (b) and Spp(q) of polymer–polymer
pairs (c), plotted as a function of wavenumber q. As in figure 3, the
colloid packing fraction is ηc = ηc,crit = 0.15 in a box of linear
dimension L = 27. The curves refer to a variation of ηp from
ηp = 0.065 to 0.318 (cf figure 3), as indicated in the figure.

and also Spp(q) has a maximum at q = 0 for all values of
ηp. A particularly interesting feature is the non-monotonic
decay of gpp(r) with r for small r (figure 3(c)). For the
standard AO model, gpp(r) has a broad maximum at r =
0 (the entropic attraction between polymers caused by the
colloids favors the possibility that polymers sit on top of each
other) which decays to one for large r monotonically. In

5
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the present model, the competition of this depletion attraction
with the repulsion described by equation (4) causes this more
complicated structure.

As discussed already in [28], various linear combinations
can be formed out of Scc(q), Scp(q) and Spp(q), which at
small q can all be analyzed according to an Ornstein–Zernike
behavior:

Sαβ(q) = kBTχαβ/(1 + q2ξ 2
αβ), (14)

where χαβ is a ‘susceptibility’ and ξαβ the correlation length. It
was found that both χαβ and ξαβ increase when ηp approaches
the critical point ηp,crit. While χαβ depends on the type of linear
combination that is considered, ξαβ does not, i.e. there occurs
a unique correlation length in the system [28].

To provide a background for our study of the structure
factor in the presence of shear, we recall a few central points
of the analysis of [28]. First of all, we note that for a binary
(A, B) mixture the partial structure factors SAA(q), SAB(q)

and SBB(q) can be used to study structure factors SNN(q),
describing the fluctuations of total density and SCC(q) [40]
describing the fluctuation of the relative concentration:

SNN(q) = SAA(q) + 2SAB(q) + SBB(q), (15)

SCC(q) = x2
BSAA(q) + x2

ASBB(q) − 2xAxBSAA(q), (16)

where xA = NA/(NA + NB) and xB = NB/(NA + NB).
Also a structure factor SNC(q) describing the coupling between
density and concentration fluctuations can be defined [40] and
studied. Furthermore one can interpret the structure factors
SAA(q), SAB(q) = SBA(q) and SBB(q) as elements of a (2 × 2)
matrix and determine the eigenvalues S+(q), S−(q) of this
matrix [28]. Figure 5 shows log–log plots of the susceptibilities
kBTχ and correlation length ξ plotted as a function of the
reduced distance ε ≡ 1 − ηp/ηp,crit (remember that ηp,crit is
not an adjustable parameter here). The possible power law
behavior ε−γ or ε−γr , where γr = γ /(1 − α) [41], and ε−ν

or ε−νr , where νr = ν/(1−α), α, γ, ν being the standard Ising
model critical exponents (ν ≈ 0.63 with 3ν = 2 − α) [42],
are also indicated. Of course, in order to unambiguously
extract such critical exponents, one needs data in the range
10−3 � ε � 10−1, which would require considerably larger
computational effort than was presently possible.

4. Time-displaced correlations in thermal
equilibrium

From the MD runs one obtains straightforwardly the time-
displaced mean square displacements of the two types
(A = colloids, B = polymers) of particles:

gα(t) = 1

Nα

〈[�ri (t) − �ri (0)]2〉, α ∈ A, B, (17)

where the sum is extended over particles of α kind only,
and the thermal average 〈· · ·〉 is realized by an average
over 16 statistically independent time origins. Also other
quantities (intermediate structure functions and a mean square
displacement related to the interdiffusion of particles) have
been obtained [28] but shall not be discussed here again, since

Figure 5. Log–log plots of (a) kBT χ and (b) ξ versus
ε = 1 − ηp/ηp,crit from MD simulations. The symbols (connected by
lines to guide the eye) describe the various structure factors Sαβ(q)
that were analyzed in terms of equation (14), as indicated in the
figure. The broken straight lines indicate the possible asymptotic
power laws, with Fisher [41] ‘renormalization’ (γr , νr ) and without it
(γ, ν). Although the simulation data indicate the onset of critical
divergences, they are not close enough to the critical point to
distinguish between these possibilities.

here we wish to discuss only those properties which we have
also studied when the system is exposed to shear (section 5).

The mean square displacements, equation (17), are
of particular interest since the behavior at large times t
immediately yields information on the self-diffusion constant
Dα of the particles, via the Einstein relation

gα(t) = 6Dαt, t → ∞. (18)

For times t less than the time unit τ = (σ 2
ccmc/εcc)

1/2 = 1
one observes a ‘ballistic’ regime gα(t) ∝ t2 as in free flight
motion, since for very small displacements the interactions
among the particles are hardly felt; for t of the order of τ there
is a slow crossover from this ballistic regime to the diffusive
behavior described by equation (18). Of course, this ballistic
regime is somewhat unphysical; in real colloidal systems there
would be another diffusive regime controlled by the solvent
viscosity. In order to make sure that the regime is reached
where equation (18) actually holds, it is useful to calculate
dgα(t)/dt [28]; we have used this derivative to read off the

6
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Figure 6. Self-diffusion constants Dα of colloids (α = c) and
polymers (α = p) plotted versus ε = 1 − ηp/ηp,crit for
colloid–polymer mixtures at the critical colloid concentration,
ηc,crit = 0.15.

self-diffusion constants Dα at long times. Figure 6 displays
the temperature dependence of the Dα at equilibrium. While
for small polymer concentration Dp and Dc are of the same
order, the motion of colloids is significantly slowed down when
the polymer concentration increases, but it is clear that Dp

remains nonzero as ηp → ηp,crit and Dc also does not exhibit
any visible critical singularity there. Interestingly, the polymer
self-diffusion constant Dp exhibits a non-monotonic behavior
with ηp: there occurs a shallow minimum at about ε ≈ 0.5,
and Dp seems to get enhanced for ε → 0 (ηp → ηp,crit). To our
knowledge, a theoretical explanation for this effect is lacking;
it means that the motion of polymers gets slightly enhanced
by the critical fluctuations (where, due to the clustering of
the colloids, presumably less collisions between colloids and
polymers occur and hence it becomes easier for the polymers
to diffuse in the polymer-rich percolating channels through the
system).

5. Colloid–polymer mixtures under shear: a
feasibility study

As is well known, a simulation of shear flow requires a
modification of the standard periodic boundary conditions, as
proposed by Lees and Edwards [43]. Defining a shear rate γ̇

for a steady shear where the velocity field �v is oriented along
the x axis and ∂vx/∂y = γ̇ via

γ̇ = vs/L, (19)

for a simulation of L × L × L boxes, one modifies the standard
periodic boundary condition as follows: as in usual periodic
boundary conditions a particle that crosses the boundary at
y = L or 0 is mapped back into the actual simulation box
by respectively subtracting L or adding L to y such that 0 �
y < L, but in addition one subtracts or adds the actual box
displacement d = γ̇ t L to the x coordinate and subtracts/adds
vs to the velocity component vx .

In flow and vorticity direction, i.e. x and z, the periodic
boundary conditions remain unchanged. By this algorithm,

when steady-state conditions are established, the upper and
lower layers of the simulation box flow with velocities vs/2
and −vs/2, while the center of the simulation box is at rest.
Applying a shear rate γ̇ = 0.1, we have checked [44] that
no shear banding occurs, and so we observe a velocity profile
which is strictly linear in the y direction.

Of course, in the motion of individual particles one
has a superposition of the thermal and streaming motions,
and now it is no longer possible to carry out a strictly
microcanonical MD simulation, due to the entropy production
(i.e. heat production) caused by the shear. Therefore, the use
of suitable thermostats is mandatory to maintain a constant
temperature in the system [33, 34]. The choice of a suitable
thermostat for such simulations needs to be considered with
great care [44]. In order not to violate local momentum
conservation, thus providing a correct description of the system
in the hydrodynamic limit, the choice of the dissipative particle
dynamics (DPD) thermostat [45, 46] would be preferable, but
it can only be used (in its standard implementation) for rather
low shear rates [44]. Therefore, we used another thermostat,
recently proposed by Bussi et al [47], which also works well
for rather high shear rates although it has the disadvantage
that it does not conserve momentum locally and hence is not
strictly consistent with hydrodynamics. This thermostat works
efficiently also if 1/γ̇ is not much, say a factor of 100–1000,
larger than the typical microscopic timescale of the system,
τ (σ 2

ccmc/εcc)
1/2 = 1. As in the Berendsen thermostat [48], the

Bussi thermostat uses a velocity rescaling scheme to adjust the
temperature of the system, but different from the Berendsen
thermostat it yields a correct description of the canonical
ensemble in thermal equilibrium. In the scheme proposed
by Bussi et al the velocities of the particles are rescaled in
every time step δt by a factor α which is calculated from the
following expression:

α2 = e−δt/τth + 1

2kBT K
(1 − e−δt/τth )

(
R2

1 +
3N∑
i=2

R2
i

)

+ 2R1e−δt/2τth

√
1

2kBT K
(1 − e−δt/τth ). (20)

Here, K is the instantaneous kinetic energy of the system
and the Ri are independent random numbers from a Gaussian
distribution with zero mean and unit variance. The parameter
τth controls the timescale by which the thermostat responds to
fluctuations of the temperature. In the present study, we have
chosen the value τth = 2.0. For the considered shear rate
γ̇ = 0.1, we carefully checked that a constant temperature
(namely kBT = 1) was indeed achieved in all cases [44]. The
system was run for 106 MD time steps of step size δt = 0.005
and, since in the beginning of the simulation the system is not
yet in the steadily flowing state, only the second half of the runs
was used for the data analysis.

Figure 7 shows the radial distribution functions gcc(r),
gcp(r) and gpp(r) versus r for various polymer packing
fractions. Also included in the figure are their counterparts
for the unsheared systems at ηp = 0.197 and 0.312 (dotted
lines). Whereas there are no differences between the sheared
and the unsheared case at low density, at high density tiny
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Figure 7. Partial radial distribution functions gcc(r) of
colloid–colloid pairs (a), gcp(r) of colloid–polymer pairs (b) and
gpp(r) of polymer–polymer pairs (c) plotted as a function of r for a
system with L = 27 and Nc = 5373. The curves refer to a variation
of the polymer packing fraction ηp = 0.197, 0.255, 0.283, 0.301 and
0.312 (from top to bottom). The shear rate γ̇ = 0.1 was used
throughout. The dotted lines display gαβ(r) for the unsheared
systems at ηp = 0.197 and 0.312. As in figure 3, the curves are
shifted with respect to each other in steps of 0.1 with respect to the y
axis.

differences are visible for large values of r . However, the
shear-induced anisotropy becomes more apparent when one
considers the expansion of the pair correlation function Gαβ(�r)

(equation (10)) into spherical harmonics [44, 49]:

Gαβ(�r) =
∞∑

�=0

+�∑
m=−�

g(αβ)

�m (r)Y�m(�, ϕ). (21)

Since g(αβ)

00 (r) corresponds to the usual radial distribution
function gαβ(r) and since the antisymmetry of the spherical
harmonics implies that the coefficients with � = 1 vanish, as
well as the coefficients with � = 2 if m = 0 or ±1, the lowest-
order coefficients of interest are those of � = 2 with m = ±2.

Since {Y22(�, ϕ)} =
√

15
8π

xy
r2 , this implies that the imaginary

part of gαβ,22(r) is nonvanishing if Gαβ(�r) is anisotropic (of
course, all coefficients g(αβ)

�m (r) except for g(αβ)

00 (r) vanish in
the absence of shear since then Gαβ(�r) does not display any
angular dependence). We can compute this imaginary part
directly from the simulation using the formula [44]

Im{g(αβ)

22 (r)} =
√

15

8π

L3

Nα Nβ

×
〈 Nα∑

i=1

Nβ∑
j ( �=i)=1

δ(|�rα
i − �rβ

j | − r)
(xα

i − xβ

j )(yα
i − yβ

j )

|�rα
i − �rβ

j |4
〉
.

(22)

Figure 8 shows that indeed in these imaginary parts of
g(cc)

22 (r), g(cp)

22 (r) and g(pp)

22 (r) one finds considerable structure,
and the range over which these imaginary parts are distinctly
different from zero clearly increases with increasing polymer
packing fraction. Since, according to theory [50] one must
expect, however, that the critical point (ηc,crit, ηp,crit) gets
shifted in the sheared fluid mixture relative to its location in
the (ηc,crit, ηp,crit) plane in equilibrium, an analysis of critical
behavior under shear on the basis of these data would be
premature! In the equilibrium case, we had the huge advantage
that the location of the critical point as well as the whole
coexistence curve could be established relatively easily by
Monte Carlo simulation in the grand-canonical ensemble; this
advantage is lost for systems under shear. Developing new
methods that would allow us to find the critical point of
systems under shear that are not based on an analysis of
Gαβ(�r) and Sαβ(�q) are beyond the scope of the present study,
however.

The theory in [50] predicts a rather pronounced anisotropy
of the structure factors Sαβ(�q) for systems under shear, for
ηc = ηc,crit(γ̇ ):

S−1
αβ (q) = Aαβ(γ̇ )[1−ηp/ηp,crit(γ̇ )]γ + Bαβ(q̇)qa

x +Cαβ(γ̇ )q2

(23)
where the exponent α is given by [50] α = 2/5 and γ ≈ 1.23
is the standard critical exponent of S−1

αβ (q = 0) (there should
be no confusion between this exponent and the use of the
symbol γ̇ for the shear rate). Some experimental evidence
for equation (23) has indeed been seen in mixtures of small
molecules under shear [51]. Since in the present study only a
simple nonzero shear rate was used, we do not discuss here the
dependence of the critical point location and of the pre-factors
Aαβ , Bαβ and Cαβ on shear rate further. Thus, we have also
looked for possible effects of the shear on the structure factors

8
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Figure 8. Imaginary parts of the distribution functions g(22)
cc (r) of

colloid–colloid pairs (a), g(22)
cp (r) of colloid–polymer pairs (b) and

g(22)
pp (r) of polymer–polymer pairs (c) for the same conditions as in

figure 7.

Sαβ(q), see figure 9. While some enhancement of |Sαβ(q)| due
to shear clearly is visible, unfortunately the statistical accuracy
of the data does not warrant a quantitative analysis in terms of
equation (23) yet. The necessary computational resources for a
profound study of equation (23) were not available to us at this
time. One can only see that for the smaller polymer packing
fraction (ηp = 0.255 in figure 9(a)) there is only a small effect
of shear rate, while for the larger polymer fraction (ηp = 0.312
in figure 9(b)) the effect is somewhat stronger.

Figure 9. Partial static structure factors Sαβ(q) plotted versus q for
the system with box linear dimension L = 27, colloid packing
fraction ηc = 0.15, shear rate γ̇ = 0.1 and two choices of the
polymer packing fraction, ηp = 0.255 (a) and ηp = 0.312 (b).

(This figure is in colour only in the electronic version)

As a final point, we consider the self-diffusion constants
Dα of colloids (α = c) and polymers (α = p), as obtained from
the mean-squared displacements perpendicular to the shear
direction. Figure 10 shows the Dα as a function of ηp for
the shear rate γ̇ = 0.1 in comparison to the unsheared case.
It is interesting that under shear the Dα are slightly smaller.
Moreover, Dp for the sheared case exhibits a shallow maximum
around ηp = 0.28 and, for high values of ηp, it seems to
decrease with increasing ηp, in contrast to the unsheared case.
Also for this effect, a theoretical explanation is lacking. The
behavior of various diffusion properties will be a subject of
forthcoming studies. In particular, we aim at revealing the role
of critical fluctuations in the anomalous behavior of Dp with
and without shear.

6. Concluding remarks

In this paper, a soft version of the AO model for colloid–
polymer mixtures, where polymers interact weakly (figure 1),
has been presented and it was shown that the model is well
suited for applications of MD simulation methods to study
both equilibrium properties (static as well as time-displaced
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Figure 10. Self-diffusion constants of polymers and colloids for the
unsheared system (open symbols) and the system under shear with
shear rate γ̇ = 0.1 (closed symbols).

correlations) and properties under shear. The absence of
interactions between the polymers in the ordinary AO model
does not allow for a realistic modeling of dynamic properties.
In particular, structural anisotropies of systems under shear are
probably strongly underestimated by the ordinary AO model.
The soft-repulsive interactions between the polymers in the
modified AO model lead also to a slightly more realistic
modeling of various static properties of the unsheared fluid
(including the phase diagram).

While critical properties (static correlation length,
susceptibilities, etc) in equilibrium are in accord with
theoretical expectations at least roughly, the simulation data
obtained in the present study cannot yet make a meaningful
quantitative statement on the change of critical properties
under shear. Our preliminary results (described in figures 7–
10) show that some modification of properties due to shear can
be identified, but the quality of the data does not yet suffice
for a more precise test of the pertinent theory. However, we
have shown how the correlation function Img(αβ)(r)

22 (αβ =
cc, cp, pp) changes when approaching the critical point. In
fact, this quantity is very useful to identify anisotropies in the
critical fluctuations that are due to the application of shear.
In forthcoming studies we shall extract the correlation length
from Img(αβ)

22 (r) which was not yet possible due to the lack of
large computer resources.

In order to make further progress, it would also be
desirable to extend the thermostat presented by Bussi et al [47]
such that it is compatible with local momentum conservation,
in order to respect hydrodynamics. Then large scale
simulations with an efficiently parallelized version of the
simulation code on a massively parallel computer would be
needed to obtain simulation data with a very good statistical
accuracy, and data at several shear rates as well as several
colloid volume fractions need to be taken. Unfortunately, the

huge computer resources necessary for such a study are yet
unavailable. A conceptual problem is also that a viable method
to identify the critical point in the presence of shear is needed.
Thus, the simulation study of colloid–polymer mixtures under
shear remains a challenging problem.
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